1 Fig. 12 is a sketch of the curve $y=2 x^{2}-11 x+12$.

Not to
scale

Fig. 12
(i) Show that the curve intersects the x-axis at $(4,0)$ and find the coordinates of the other point of intersection of the curve and the x-axis.
(ii) Find the equation of the normal to the curve at the point $(4,0)$.

Show also that the area of the triangle bounded by this normal and the axes is 1.6 units ${ }^{2}$. [6]
(iii) Find the area of the region bounded by the curve and the x-axis.

2 A curve has equation $y=x^{3}-6 x^{2}+12$.
(i) Use calculus to find the coordinates of the turning points of this curve. Determine also the nature of these turning points.
(ii) Find, in the form $y=m x+c$, the equation of the normal to the curve at the point $(2,-4)$.

